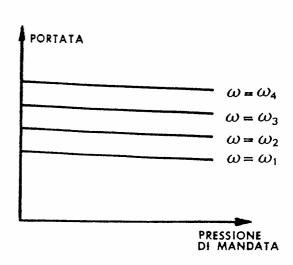
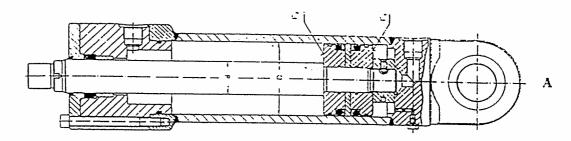
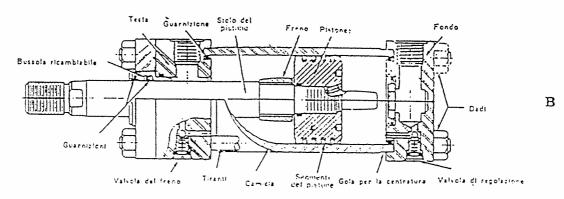

#### AZIONAMENTI OLEOIDRAULICI AZIONAMENTI PNEUMATICI FLUIDO INCOMPRIMIBILE (OLIO) FLUIDO COMPRIMIBILE (ARIA) ALTA PRESSIONE BASSA PRESSIONE CENTRALINA IDRAULICA **IMPIANTO CENTRALIZZATO POMPE** COMPRESSORI A INGRANAGGI ALTERNATIVI • A PALETTE A PALETTE • A PISTONI ASSIALI • A PISTONI RADIALI • ALTRE **MOTORI** MOTORI • A PALETTE A PALETTE • A PISTONI ASSIALI CILINDRI PNEUMATICI • A PISTONI RADIALI


• CILINDRI IDRAULICI

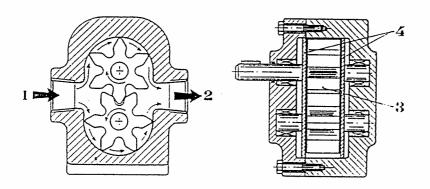






## POMPE NON VOLUMETRICHE

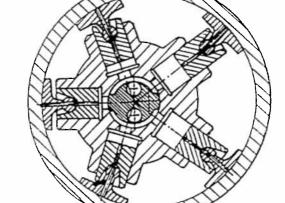




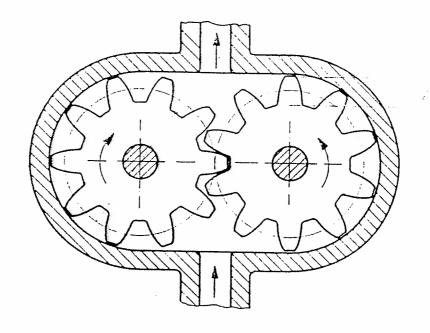

# POMPE VOLUMETRICHE



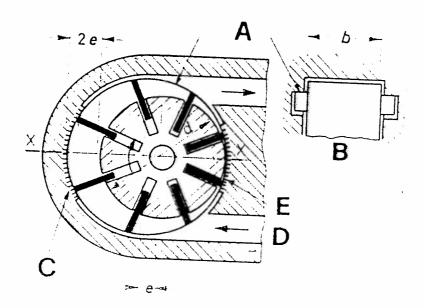



Sezione di cilindri a doppio effetto.

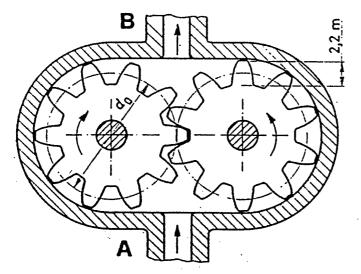
A) esecuzione saldata; B) esecuzione con tiranti.




Pompa a ingranaggi a ripresa idraulica del gloco assiale.

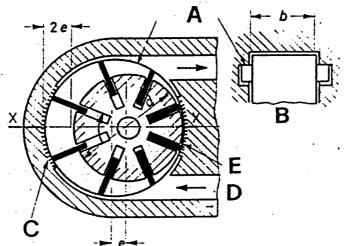

1) aspirazione; 2) mandata; 3) ingranaggi; 4) bronzine.




Motore a pistoni radiali



POMPA A INGRANAGGI

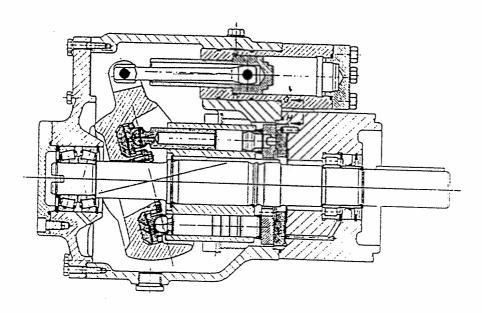



POMPA A PALETTE

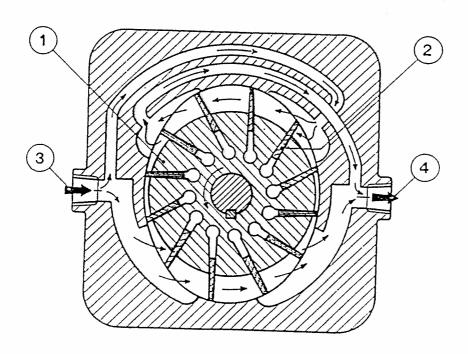


Pompa a ingranaggi.



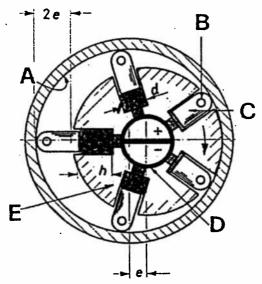



- Pompa a palette con aspirazio-


ne esterna.

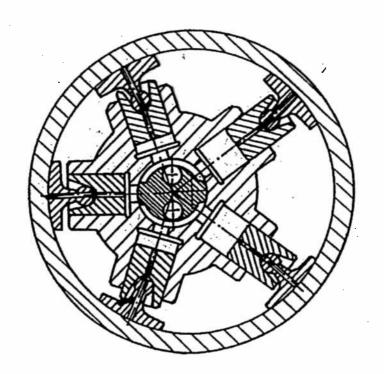
A) traiettoria della paletta; B) guida della paletta; C) superficie di tenuta; D) aspirazione E) mandata.

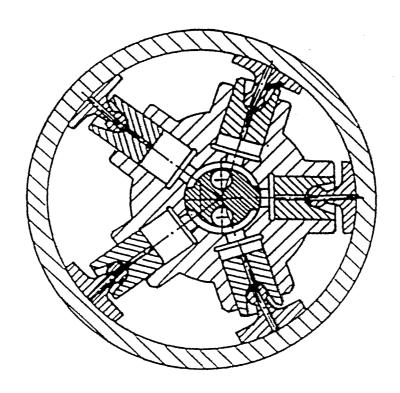
Pompa a ingranaggi



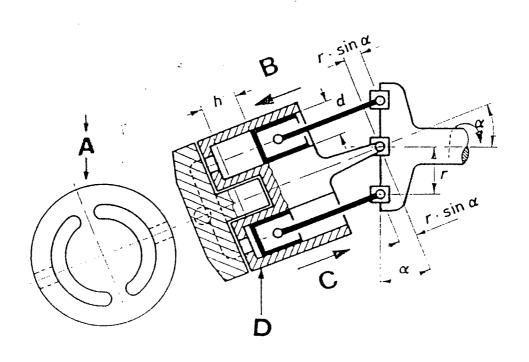

Pompa a pistoni assiali con barilotto rotante allineato e piastra inclinata ferma. L'inclinazione della piastra è regolabile per modificare la cilindrata.




Pompa a palette autobilanciata.


1) rotore; 2) palette; 3) aspirazione; 4) mandata.




Pompa a pistoni radiali.

A) traiettoria; B) guida (testa a croce); C)
pistoni; (numero z); D) albero cavo fisso;
E) rotore; 2 e) corsa.

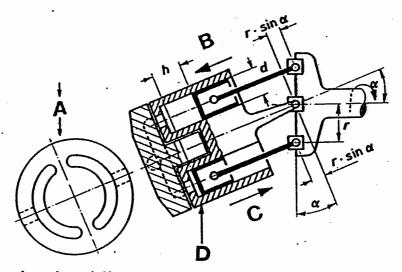




MOTORE A PISTONI RADIALI




MOTORE A PISTONI ASSIALI


# POMPE A PISTONI ASSIALI



## POMPA A TESTA INCLINABILE



POMPA A PIASTRA INCLINABILE



Pompa a pistoni assiali.

A) piastra di controllo fissa (vista in pianta); B) compressione; C) aspirazione; D) bloc co cilindri rotante.

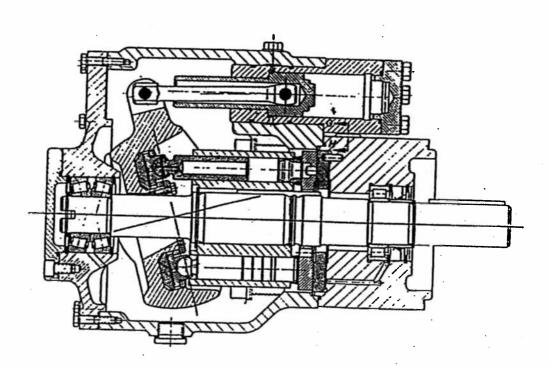
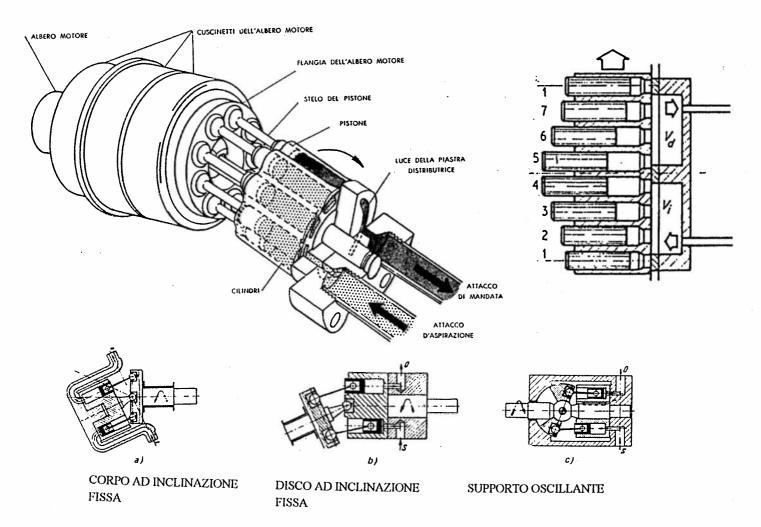
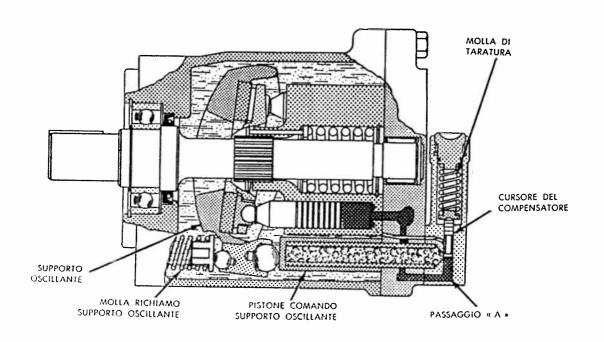
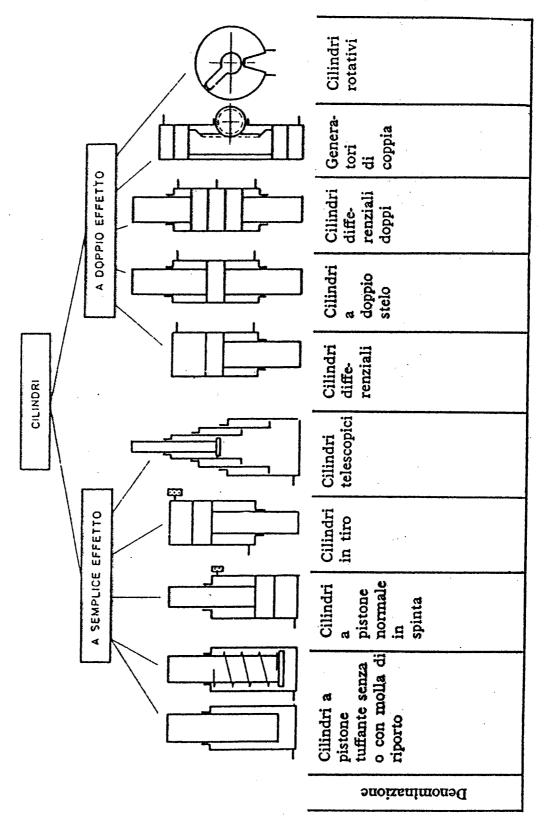





Fig. - Pompa a pistoni assiali con barilotto rotante allineato e piastra inclinata ferma. L'inclinazione della piastra è regolabile per modificare la cilindrata.

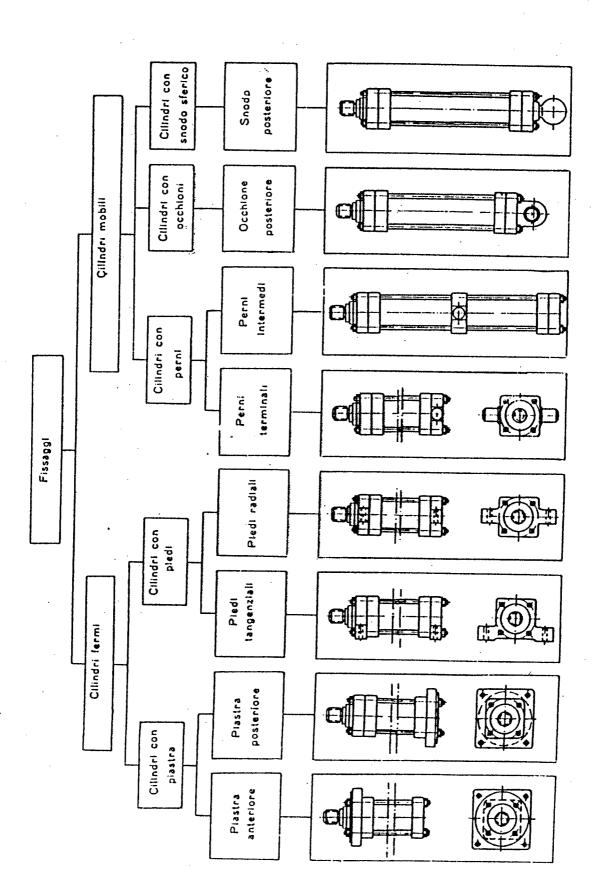
# POMPE A PISTONI ASSIALI



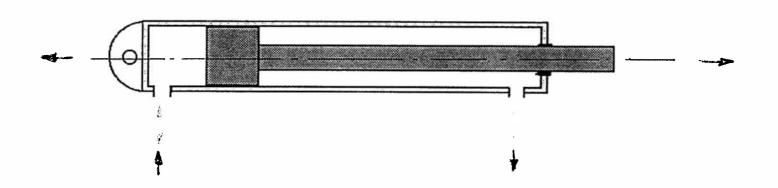


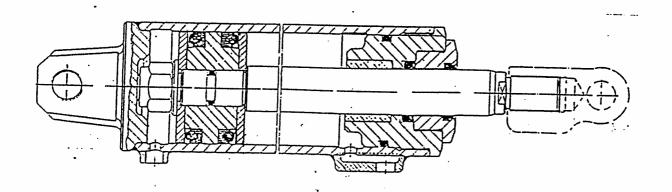

# Schemi dei principali tipi di pompe oleodinamiche

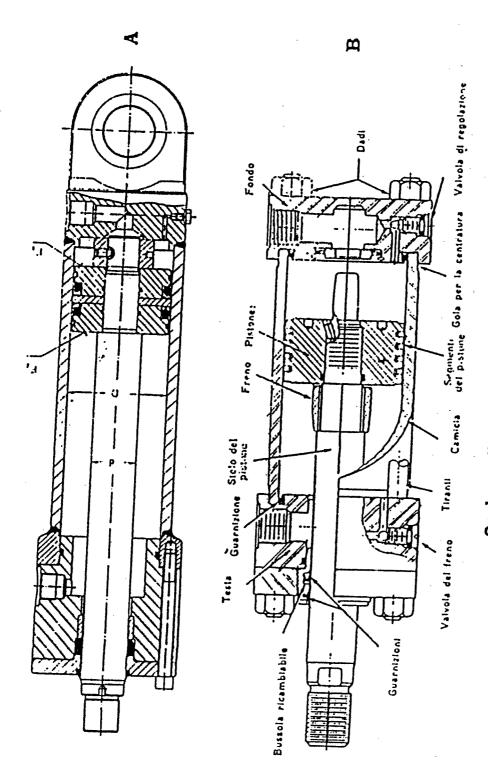
|                 | Tipo e sistema  |                         | schema                                         | campo di<br>pressioni<br>(bar) | campo di regimi<br>(gir⊮min) | viscosità<br>cSt | rendim.<br>max | costo |           |
|-----------------|-----------------|-------------------------|------------------------------------------------|--------------------------------|------------------------------|------------------|----------------|-------|-----------|
|                 |                 | pompe a ingranaggi      | ingranaggi<br>esterni                          |                                | 120 ÷ 175                    | 1500 ÷ 3000      | 40 ÷ 80        | 0,75  | . 1       |
|                 | a doppio rotore |                         | ingranaggi<br>interni                          | <b>9</b>                       | 120 ÷ 250                    | 1500 ÷ 3500      | 50 ÷ 100       | 0,7   | 1,2 ÷ 2   |
| tanti           |                 |                         | viti                                           |                                | 60 ÷ 100                     | 1000 ÷ 5000      | 80 ÷ 200       | 0,75  | 1,4 ÷ 2   |
| pompe rotanti   | a moto rotante  | pompe a palette         | palette<br>a semplice<br>eccentricità          | 9                              | 100 ÷ 175                    | 500 ÷ 1500       | 30 ÷ 50        | 0,8   | 1,2 ÷ 1,8 |
|                 |                 |                         | palette<br>rotanti<br>a doppia<br>eccentricità |                                | 120 ÷ 175                    | 500 ÷ 3000       | 30 ÷ 50        | 0,82  | 1,3 ÷ 2   |
|                 |                 |                         | palette<br>fisse                               | 0                              | 120 ÷ 175                    | 500 ÷ 1500       | 30 ÷ 50        | 0,8   | 1,3 ÷ 2   |
|                 |                 | pompe a pistoni assiali | piastra<br>inclinata                           |                                | 200 ÷ 300                    | 1000 ÷ 3000      | 30 ÷ 50        | 0,88  | 3 ÷ 6     |
| pompe a pistoni | a moto assiale  |                         | barilotto<br>inclinato                         |                                | 200 ÷ 300                    | 500 ÷ 3000       | 30 ÷ 100       | 0,88  | 3 ÷ 5     |
|                 | a moto          | eccentrici              | pistoni<br>radiali                             |                                | 20 <b>0</b> ÷ 350            | 1000 ÷ 2000      | 20 ÷ 50        | 0,88  | 3 ÷ 6     |
|                 |                 | ротре а                 | pistoni<br>in linea                            |                                | 250 ÷ 450                    | 1000 ÷ 2000      | 20 ÷ 50        | 0,85  | 3 ÷ 5     |


# CILINDRI IDRAULICI

# TIPI E SIMBOLOGIA


| Denominazione                                 | Spiegazione                                                                                                                                                   | Simbolo |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| cilindro a semplice effetto                   | La pressione del fluido viene esercitata in un so-<br>lo ed unico senso (corsa di andata)<br>Corsa di ritorno:<br>mediante forza indefinita<br>mediante molla |         |
| cilindro a doppio effetto                     | La pressione del fluido viene esercitata alterna- tivamente nei due sensi (corsa di andata e di ri- torno)  A semplice stelo  A doppio stelo                  |         |
| cilindro differenziale                        | Il rapporto tra la sezione del cilindro e la sezione<br>anulare del pistone dal lato dello stelo è essen-<br>ziale per il funzionamento del cilindro          |         |
| cilindro con ammortizzatore<br>non regolabile | Agente da un solo lato                                                                                                                                        |         |
|                                               | Agente da ambedue i lati                                                                                                                                      |         |
| cilindro con ammortizzatore<br>regolabile     | Agente da un solo lato                                                                                                                                        |         |
|                                               | Agente da ambedue i lati                                                                                                                                      |         |
| cilindro telescopico a sem-<br>plice effetto  | Cilindro con più stantuffi che entrano uno nel-<br>l'altro con spostamento di ritorno solo mediante<br>forze esterne                                          |         |
| cilindro telescopico a dop-<br>pio effetto    | Cilindro con più stantuffi che entrano uno nel-<br>l'altro con spostamento di andata e ritorno                                                                |         |





Classificazione funzionale dei cilindri.



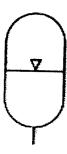
Sistemi di fissaggio dei cilindri.







Sezione di cilindri a doppio effetto. A) esecuzione saldata; B) esecuzione con tiranti.

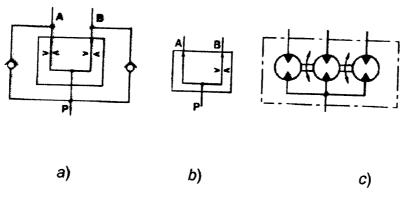

# ALTRI COMPONENTI E FUNZIONI DEI CIRCUITI OLEOIDRAULICI

#### **Accumulatori**

Serbatoi che svolgono la funzione di immagazzinare e restituire energia sotto forma di fluido in pressione.

Vengono impiegati come fonti ausiliarie di potenza, oppure per sicurezza, o, infine, per altre particolari esigenze di funzionamento, ad esempio, per attenuare le pulsazioni di portata di una pompa a pistoni.

Nell'oleoidraulica si impiegano accumulatori idropneumatici

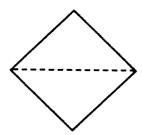



Rappresentazione simbolica di un accumulatore idropneumatico.

#### Divisori di flusso

Dividono la portata in essi entrante in due portate identiche; se il fluido si muove in verso opposto, raccolgono due portate in un unico flusso, v. a). Esistono anche divisori di flusso che assicurano una portata costante in uno dei due rami, v. b).

Un divisore di flusso si può ottenere anche accoppiando fra loro due o più motori idraulici, v. c).




Divisori di flusso.

#### Filtri

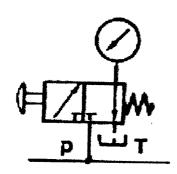
L'inquinamento viene classificato in 14 livelli, dalla classe 00 (livello minimo) alla classe 12 (inquinamento massimo); per ogni classe viene indicato il numero di particelle presenti in 100 cm $^3$  di liquido, suddivise in classi dimensionali: da 5 a 15  $\mu$ m, da 15 a 25  $\mu$ m, da 25 a 50  $\mu$ m, da 50 a 100  $\mu$ m, oltre 100  $\mu$ m.

Il filtro viene preferibilmente disposto sul ramo di mandata, generalmente nelle immediate vicinanze della pompa, a valle del limitatore di pressione. Il filtro può essere posizionato anche sul ritorno – soprattutto quando nell'impianto sono presenti dei cilindri idraulici – o su un apposito circuito, in parallelo a quello principale.



Rappresentazione simbolica di un filtro.

#### Guarnizioni


Le guarnizioni svolgono l'importante funzione di eliminare o contenere le perdite nelle zone di collegamento fra i componenti dei circuiti idraulici.

Per impieghi statici il tipo più impiegato è l'O-Ring (OR).

Nei cilindri idraulici, per la tenuta dei pistoni si impiegano spesso guarnizioni multiple a V.

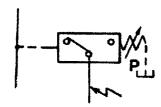
#### Manometri

La pressione del fluido viene misurata mediante manometri, di solito a tubo Bourdon oppure costituiti da trasduttori di pressione, che hanno in uscita una tensione elettrica proporzionale alla pressione. Questi ultimi vengono inseriti con continuità, mentre i manometri tipo Bourdon sono collegati al circuito idraulico attraverso un dispositivo, per esempio un distributore a tre vie e due posizioni, v. figura, comandato a pulsante, che protegge il manometro dalle sovrapressioni del circuito e lo mette in comunicazione con questo solo quando occorre effettuare la lettura.



Collegamento di un manometro attraverso un organo di sezionamento.

#### Moltiplicatori di pressione


Il coefficiente di moltiplicazione può arrivare a 3.



Rappresentazione simbolica di un moltiplicatore di pressione.

#### **Pressostati**

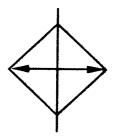
I pressostati svolgono la funzione di aprire o chiudere un circuito elettrico, azionando un microinterruttore quando la pressione raggiunge un valore prefissato.



Rappresentazione simbolica di un pressostato.

#### Raccordi

Svolgono la funzione di connettere i componenti del circuito idraulico ai tubi di collegamento o di connettere fra loro tronchi di tubi rigidi o flessibili.


#### Regolatori di portata

I regolatori di portata consentono di modificare la portata agendo sulla sezione di passaggio del fluido, permettendo così di modificare la velocità delle utenze.



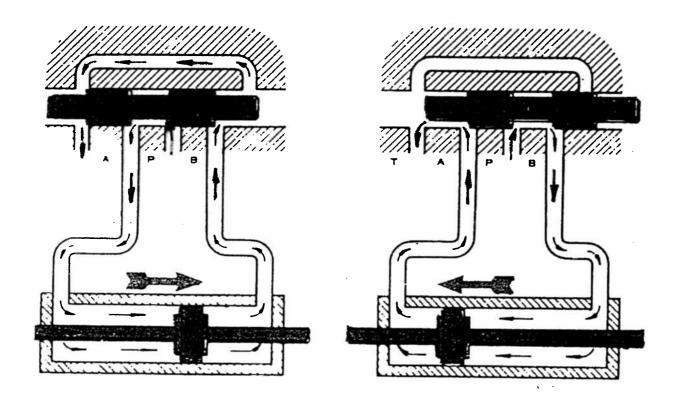
Rappresentazione simbolica di un regolatore a) a flusso laminare, b) con strozzatura localizzata.

#### Scambiatori di calore



Rappresentazione simbolica di uno scambiatore di calore.

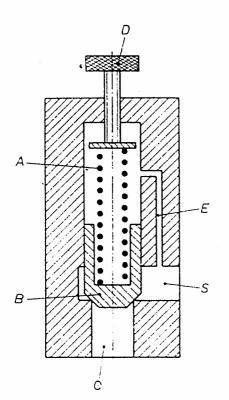
#### Serbatoi


Serbatoi a pelo libero e serbatoi pressurizzati

#### **Tubazioni**

I tubi rigidi – generalmente in acciaio e realizzati senza saldatura – si impiegano per collegare fra loro componenti in posizione reciproca fissa.

I tubi flessibili si impiegano quando le posizioni reciproche dei componenti da collegare non sono fisse e quando si deve prevedere la possibilità di collegare e scollegare rapidamente i componenti stessi. I tubi flessibili sono per lo più realizzati con una guaina interna in gomma sintetica, un'armatura intermedia in trecce tessili o d'acciaio che conferisce resistenza al tubo, ed una guaina esterna di protezione.

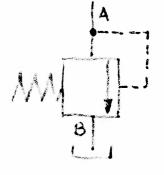


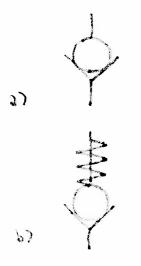


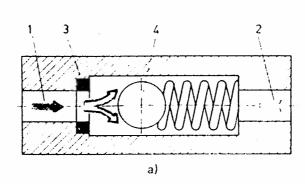

# VALVOLA DIREZIONALE A 4 VIE E 2 POSIZIONI CHE COMANDA IL MOVIMENTO NEI DUE VERSI DI UN CILINDRO IDRAULICO A DOPPIO EFFETTO.

Fig. 9.7 - Combinazione di uno stesso corpo con vari cursori, per creare diversi schemi corpo simboli grafici —> cursori --> H H

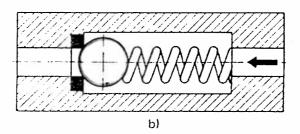
di distribuzione in funzione dei cursori montati (individuati da lettere convenzionali)





#### LIMITATORE DI PRESSIONE BUOISH DA BIRETTA


#### Schema di funzionamento.

- A: molla di taratura;
- B: pistoncino per la messa a scarico della portata;
- C: connessione con il circuito;
- D: volantino per precaricare la molla;
- E: collegamento con lo scarico;
- -M: molla di taratura;
  - S: scarico;
- G:- camera superiore; F:- canalino di equilibramento:














## Valvola di non ritorno.

a) Funzionamento nel senso di flusso libero. b) Flusso bloccato. 1: ingresso; 2: uscita; 3: Sede dell'elemento di tenuta; 4: Elemento di tenuta a sfera.

oblides relief to the selfer sailer sails

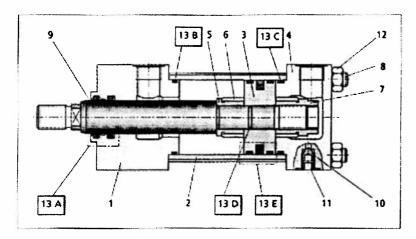



Fig. 7.20 - Guarnizioni in un cilindro oleodinamico: le compae pos. 13 significano: A= guarnizione dimonica stelo,  $B\cdot C=$  guarnizioni statiche fra mantello e testate.

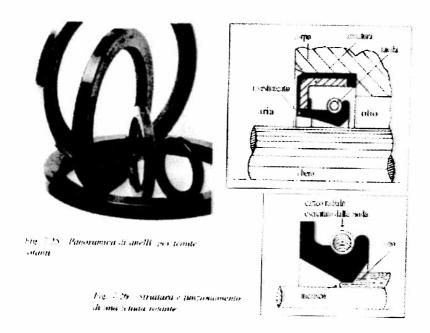






Fig. 7.21 - Guarnizioni O-ring di diversi materiali



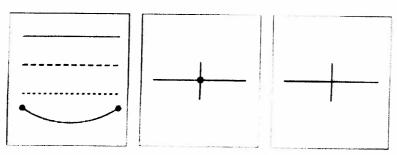
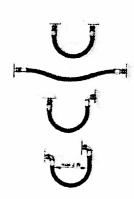




Fig. 14.16 - Tabo principale, di pilotoggio, di drenaggio, tievsibile

Fig. 14.17 - Connessione fra tudii

Lig. 14.18 - Incrocio fra rabi, senza - onaexvione



Lig. 14.19 - Esempi di montangio corretto dei valu (levvibili

# LIMITATORE DI PRESSIONE AD AZIONE INDIRETTA

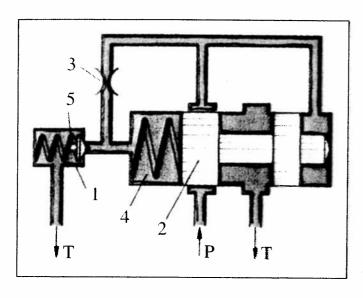
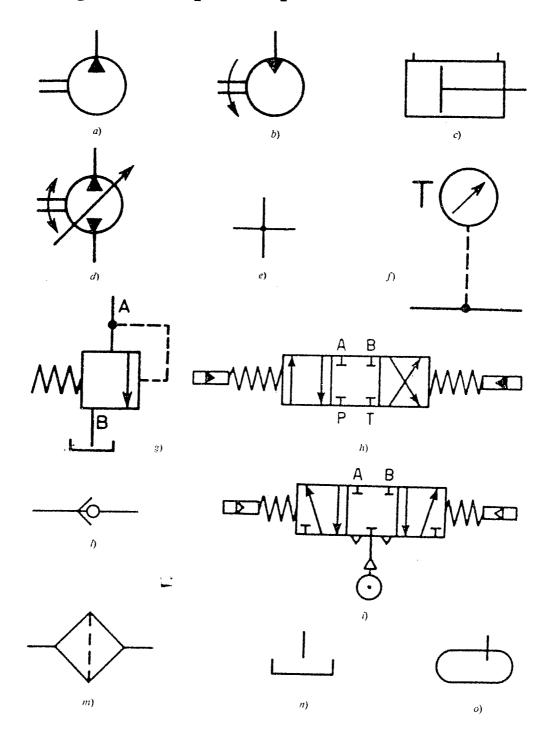
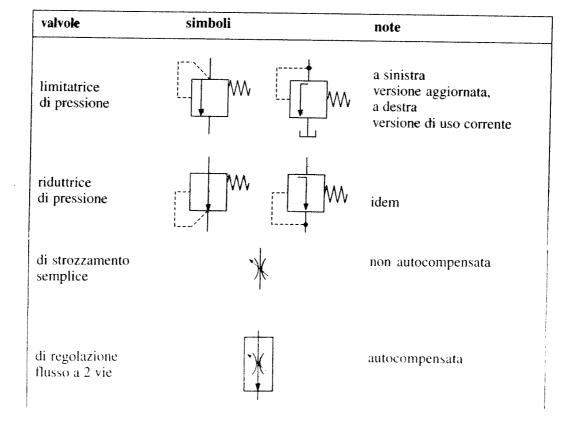




Fig. 8.6 - Schema di valvola limitatrice di pressione pilotata

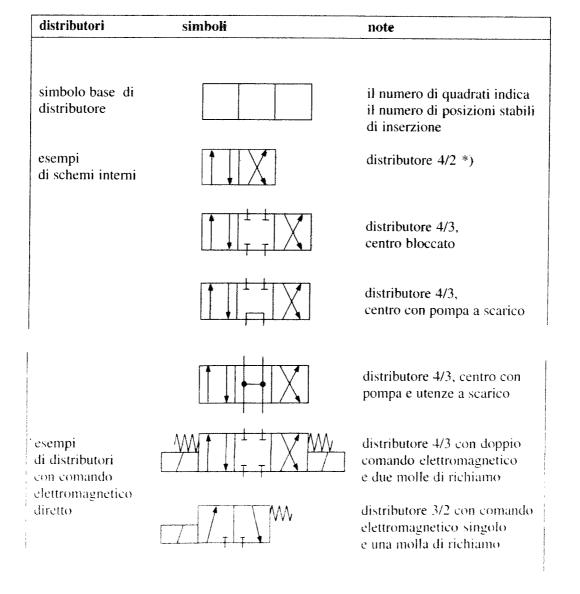
## Simbologia dei componenti per trasmissioni idrauliche



a: pompa a cilindrata fissa ad un solo verso di flusso; b: motore a cilindrata fissa ad un solo verso di flusso; c: cilindro a doppio effetto; d: pompa a cilindrata variabile a doppio senso di flusso e rotazione; e: incrocio di tubi con connessione; f: incrocio di un condotto di collegamento ad un componente di misura con un condotto principale; la linea tratteggiata si usa anche per i drenaggi e i trafilamenti; g: valvola di sicurezza con pilotaggio interno; h: distributore a quattro vie e tre posizioni (4/3) con comando idraulico e posizione centrale di riposo con centraggio a molle; i: distributore 4/3 pneumatico e con comando pneumatico; l: valvola di non ritorno; m: filtro; n: serbatoio all'aria libera; o: serbatoio pressurizzato.

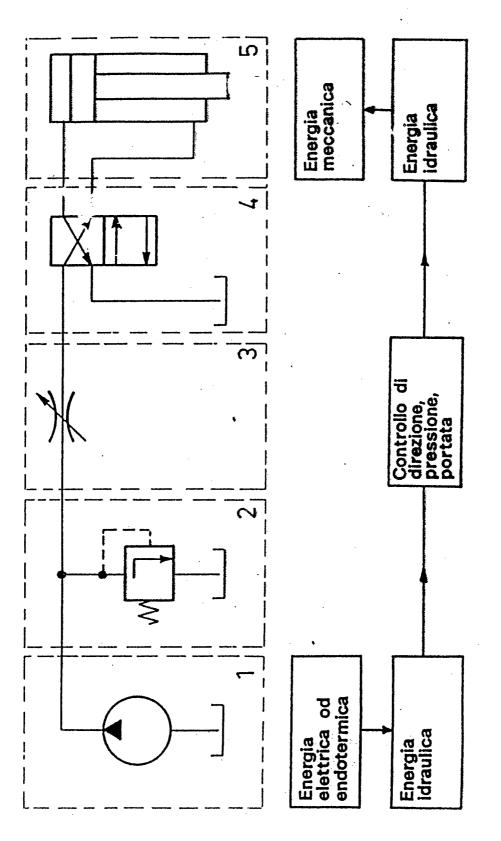

## Simboli grafici

| apparecchi vari                    | simboli    | note                                                                                                        |
|------------------------------------|------------|-------------------------------------------------------------------------------------------------------------|
| tubo principale                    |            | linea continua                                                                                              |
| tubo di pilotaggio                 |            | linea a tratti lunghi                                                                                       |
| tubo di drenaggio                  |            | linea a tratti brevi                                                                                        |
| tubo flessibile                    |            | curva continua                                                                                              |
| collegamento<br>fra tubi           |            | con cerchio nell'intersezione                                                                               |
| incrocio fra tubi<br>non collegati |            | senza cerchio<br>nell'intersezione                                                                          |
| serbatoio                          |            | non pressurizzato                                                                                           |
| molla di richiamo                  | ₩          | ripristina la posizione di riposo<br>di un distributore al cessare<br>dell'azione di comando                |
| molla di taratura                  | <b>\</b>   | serve a modificare la rigidità della<br>molla ad es. per variare la taratura di<br>pressione di una valvola |
| accumulatore                       | $\nabla$   | con elemento di separazione<br>e precarica pneumatica                                                       |
| filtro                             |            |                                                                                                             |
| scambiatore termico                |            | le frecce trasversali orientate all'esterno indicano raffreddamento, all'interno riscaldamento              |
| motore primo<br>elettrico          | M          |                                                                                                             |
| motore primo<br>non elettrico      | M          |                                                                                                             |
| manometro                          | $\bigcirc$ |                                                                                                             |


| generatori di portata              | simboli | note                                                                        |
|------------------------------------|---------|-----------------------------------------------------------------------------|
| pompa<br>a cilindrata fissa        |         | un senso di flusso                                                          |
| pompa<br>a cilindrata fissa        |         | due sensi di flusso                                                         |
| pompa<br>a cilindrata variabile    |         | un senso di flusso                                                          |
| pompa<br>a cilindrata variabile    |         | due sensi di flusso                                                         |
| pompa-motore<br>a cilindrata fissa |         | un senso di flusso<br>funzionamento reversibile<br>come pompa e come motore |

| attuatori rotanti (motori)                 | simboli | note                                                                           |
|--------------------------------------------|---------|--------------------------------------------------------------------------------|
| motore idraulico<br>a cilindrata fissa     | =       | un senso di rotazione                                                          |
| motore idraulico<br>a cilindrata fissa     |         | due sensi di rotazione                                                         |
| motore idraulico<br>a cilindrata variabile |         | un senso di rotazione                                                          |
| motore idraulico<br>a cilindrata variabile |         | due sensi di rotazione                                                         |
| motore-pompa<br>a cilindrata fissa         |         | un senso di rotazione<br>funzionamento reversibile<br>come motore e come pompa |

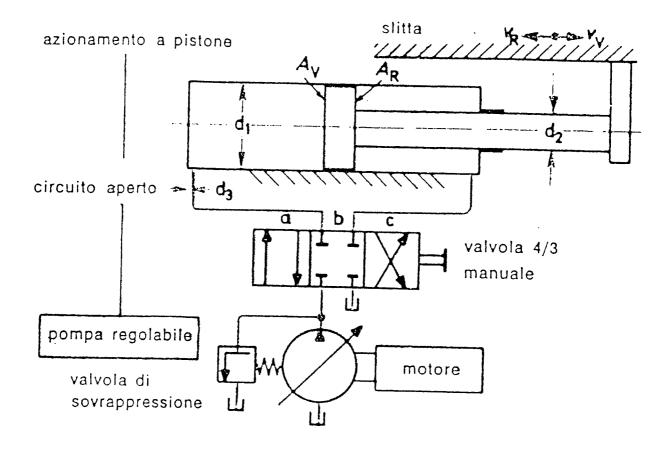
| attuatori lineari (cilindri)                                  | simboli | note                                                                   |
|---------------------------------------------------------------|---------|------------------------------------------------------------------------|
| cilindro a semplice effetto                                   |         | stelo singolo                                                          |
| cilindro<br>a doppio effetto                                  |         | stelo singolo                                                          |
| cilindro<br>a doppio effetto                                  |         | stelo bilaterale                                                       |
| cilindro a doppio effetto<br>con ammortizzatori<br>bilaterali |         | la freccia indica la<br>possibilità di taratura<br>dell'ammortizzatore |
| cilindro<br>a semplice effetto                                |         | telescopico                                                            |
| cilindro<br>a doppio effetto                                  |         | telescopico                                                            |




| valvole                        | simboli                 | note                                                                                                                    |
|--------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------|
| di ritegno<br>semplice         | <b>\( \rightarrow\)</b> | flusso libero in un senso, flusso<br>bloccato in senso opposto                                                          |
| di ritegno<br>caricata a molla |                         | flusso libero in un senso<br>superando la precompressione<br>generata dalla molla, flusso<br>bloccato in senso opposto  |
| di ritegno<br>sbloccabile      |                         | flusso libero in un senso,<br>bloccato in senso opposto può<br>essere liberato applicando la<br>pressione di pilotaggio |
| di strozzamento<br>e ritegno   | X                       | flusso strozzato in un senso,<br>libero in senso opposto                                                                |

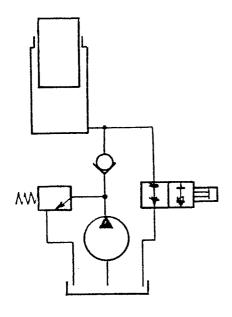


| comandi                                                               | simboli | note                                                                                                        |
|-----------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------|
| a leva                                                                |         | per il posizionamento grafico<br>dei comandi e delle molle<br>rispetto al distributore vedere<br>la nota *) |
| a spintore                                                            |         |                                                                                                             |
| a rullo                                                               | •       |                                                                                                             |
| a pulsante                                                            |         |                                                                                                             |
| a molla (richiamo)                                                    | W       |                                                                                                             |
| elettromagnetico                                                      |         |                                                                                                             |
| elettromagnetico<br>proporzionale                                     |         | la freccia indica che la forza del<br>magnete è modulabile                                                  |
| elettromagnetico<br>proporzionale<br>a due solenoidi in<br>controfase |         | la freccia indica che la forza<br>risultante dei due magneti<br>è modulabile                                |
| elettroidraulico                                                      |         |                                                                                                             |
|                                                                       |         |                                                                                                             |

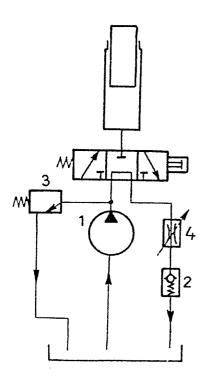

<sup>\*)</sup> Il simbolo del comando va addossato al simbolo del distributore (lato corto), o della valvola e si può posizionare liberamente lungo la verticale secondo la disponibilità di spazio, tenendo conto della presenza di molle, tacche d'arresto, ecc.



Le cinque funzioni fondamentali in un circuito oleodinamico.


1) generazione della potenza id aulica; 2) controllo della pressione; 3) controllo della portata; 4) controllo della direzione; 5) utilizzazione della potenza idraulica.

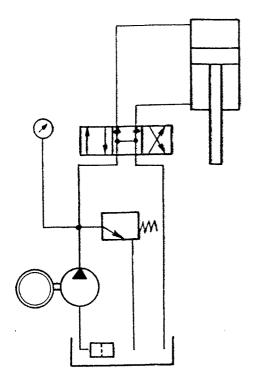
# **AZIONAMENTO IDRAULICO**



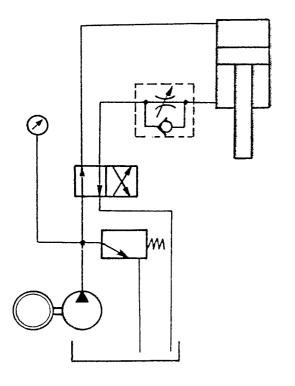

# ESEMPI DI CIRCUITI IDRAULICI ELEMENTARI

#### CILINDRO VERTICALE A SEMPLICE EFFETTO



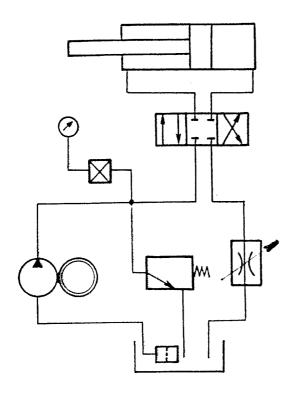

1. Cilindro verticale a semplice effetto con pompa a portata fissa, distributore a due vie e due posizioni con azionamento manuale, valvola limitatrice di pressione e valvola di non ritorno.




 Pompa a portata costante – 2, Valvola di non ritorno –
 Valvola limitatrice di pressione – 4, Valvola di portata regolabile.

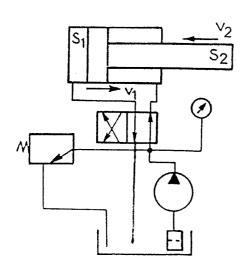
2. Cilindro verticale a semplice effetto con pompa a portata fissa, distributore a tre vie e tre posizioni con azionamento manuale e ritorno a molla, valvola limitatrice di pressione, valvola a portata regolabile e valvola di non ritorno.

#### CILINDRO VERTICALE A DOPPIO EFFETTO



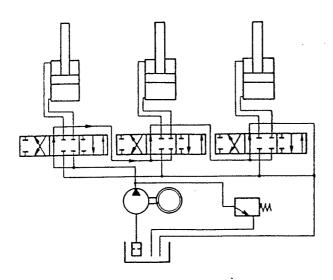

1. Cilindro verticale a doppio effetto con pompa a portata fissa, distributore a quattro vie e tre posizioni, valvola limitatrice di pressione, manometro e filtro.




2. Cilindro verticale a doppio effetto con pompa a portata fissa, distributore a quattro vie e due posizioni, valvola limitatrice di pressione, valvola a portata regolabile, valvola di non ritorno e manometro.

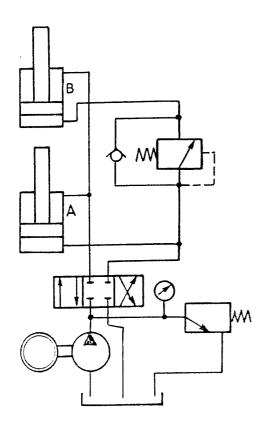
#### CILINDRO ORIZZONTALE A DOPPIO EFFETTO




Cilindro orizzontale a doppio effetto con pompa a portata fissa, distributore a quattro vie e tre posizioni, valvola limitatrice di pressione, valvola a portata regolabile, manometro e filtro.

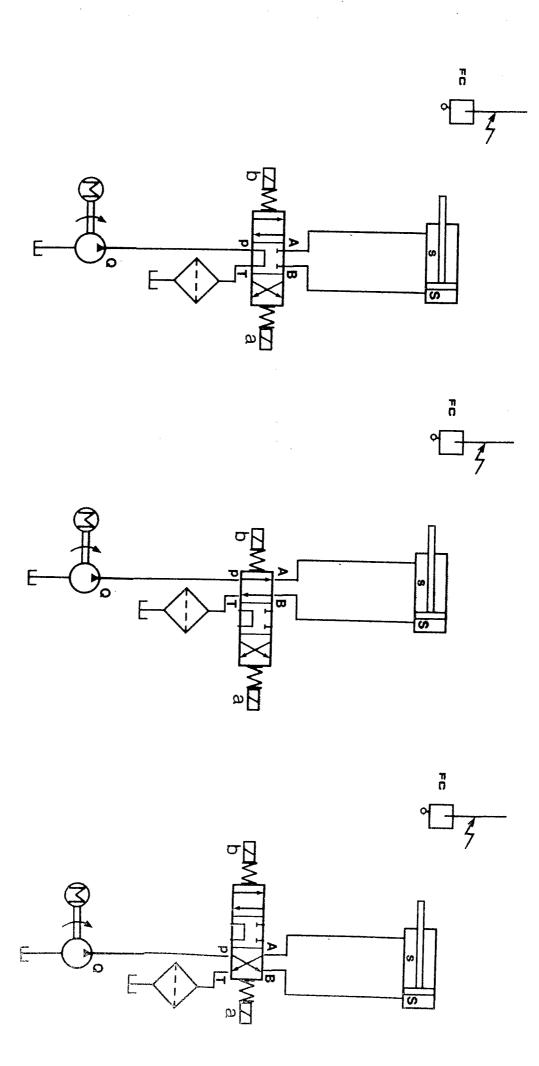
## CIRCUITO PER SPOSTAMENTI RAPIDI



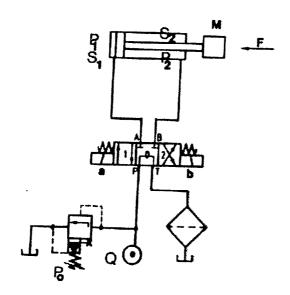

Cilindro differenziale a doppio effetto con pompa a portata fissa, distributore a quattro vie e due posizioni, valvola limitatrice di pressione, filtro e manometro.

#### CILINDRI IN PARALLELO




Circuito con tre cilindri in parallelo, distributore a sei vie e tre posizioni, valvola limitatrice di pressione, manometro e filtro.

#### CIRCUITO SEQUENZIALE




Circuito con due cilindri differenziale a doppio effetto in sequenza, valvole limitatrici di pressione, valvola di non ritorno e manometro.

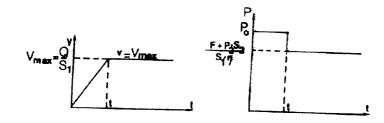
Il cilindro *B* si mette in moto solo dopo che la pressione nel cilindro *A* ha raggiunto il valore desiderato, azionando la valvola di sequenza (distributore a quattro vie e tre posizioni). Il ritorno dei due pistoni è simultaneo.

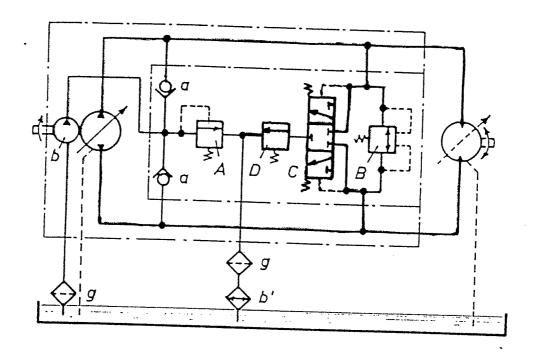


## CALCOLO DINAMICO DI UN CILINDRO



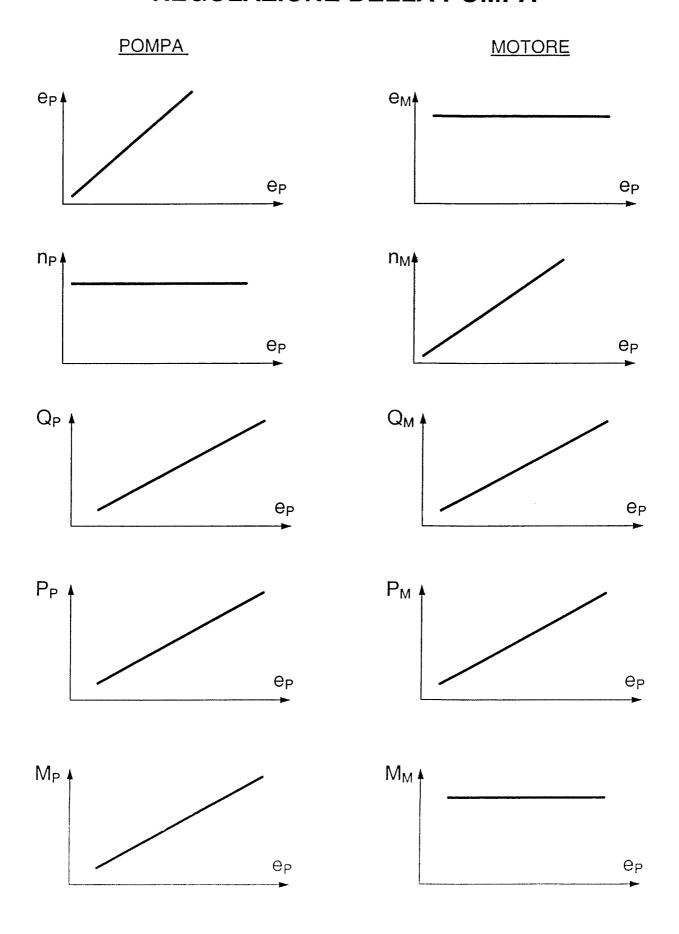
#### Fase di accelerazione:


$$p_0 S_1 \eta = F + Ma + p_2 S_2$$

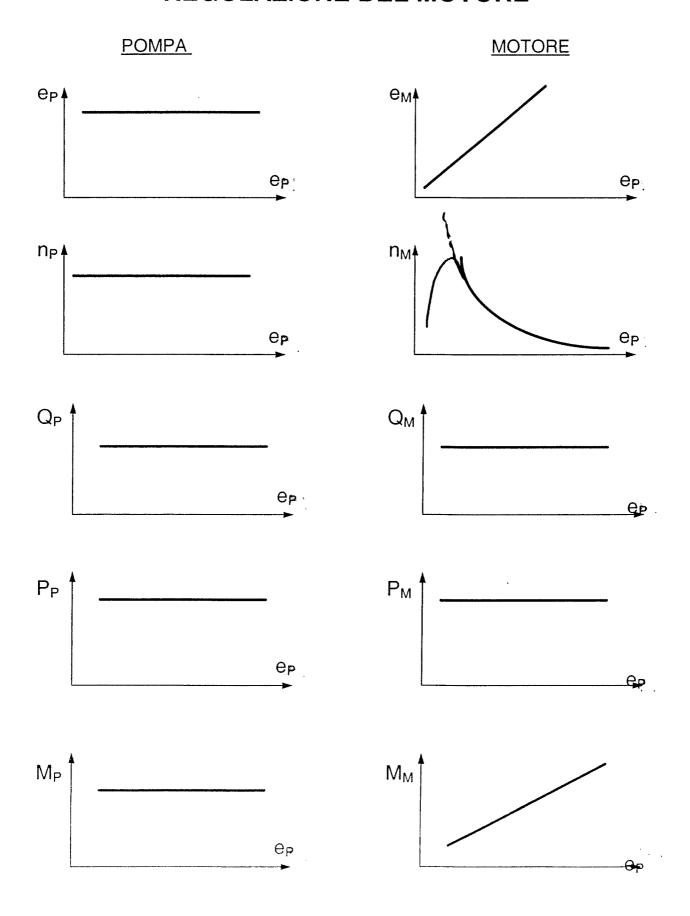

$$a = \frac{p_0 S_1 \eta - F - p_2 S_2}{M}$$

## Fase a velocità costante:

$$t = \frac{V_{MAX}}{a} = \frac{Q}{S_1 a}$$


$$p_1 = \frac{F + p_2 S_2}{S_1 \eta}$$






| а  | VALVOLA DI NON RITORNO               |
|----|--------------------------------------|
| A  | VALVOLA DI MASSIMA PRESSIONE         |
| b  | POMPA AUSILIARIA                     |
| b' | SCAMBIATORE DI CALORE                |
| В  | VALVOLA DI MASSIMA PRESSIONE         |
| C  | DISTRIBUTORE                         |
| D  | VALVOLA DI CONTROLLO DELLA PRESSIONE |
| g  | FILTRO                               |

# **REGOLAZIONE DELLA POMPA**



# **REGOLAZIONE DEL MOTORE**

